Safety engineering is an applied science strongly related to systems engineering and the subset System Safety Engineering. Safety engineering assures that a life-critical system behaves as needed even when pieces fail.
Ideally, safety-engineers take an early design of a system, analyze it to find what faults can occur, and then propose safety requirements in design specifications up front and changes to existing systems to make the system safer. In an early design stage, often a fail-safe system can be made acceptably safe with a few sensors and some software to read them. Probabilistic fault-tolerant systems can often be made by using more, but smaller and less-expensive pieces of equipment.
Far too often, rather than actually influencing the design, safety engineers are assigned to prove that an existing, completed design is safe. If a safety engineer then discovers significant safety problems late in the design process, correcting them can be very expensive. This type of error has the potential to waste large sums of money.
The two most common fault modeling techniques are called "failure modes and effects analysis" and "fault tree analysis". These techniques are just ways of finding problems and of making plans to cope with failures, as in Probabilistic Risk Assessment (PRA or PSA). One of the earliest complete studies using PRA techniques on a commercial nuclear plant was the Reactor Safety Study (RSS), edited by Prof. Norman Rasmussen
Monday, April 27, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment